Celeritas
0.5.0-86+4a8eea4
|
Calculate the mean number of Cherenkov photons produced per unit length. More...
#include <CherenkovDndxCalculator.hh>
Public Member Functions | |
CELER_FUNCTION | CherenkovDndxCalculator (MaterialView const &material, NativeCRef< CherenkovData > const &shared, units::ElementaryCharge charge) |
Construct from optical materials and Cherenkov angle integrals. | |
CELER_FUNCTION real_type | operator() (units::LightSpeed beta) |
Calculate the mean number of Cherenkov photons produced per unit length. More... | |
Calculate the mean number of Cherenkov photons produced per unit length.
The average number of photons produced is given by
\[ \dif N = \frac{\alpha z^2}{\hbar c}\sin^2\theta \dif\epsilon \dif x = \frac{\alpha z^2}{\hbar c}\left(1 - \frac{1}{n^2\beta^2}\right) \dif\epsilon \dif x, \]
where \( n \) is the refractive index of the material, \( \epsilon \) is the photon energy, and \( \theta \) is the angle of the emitted photons with respect to the incident particle direction, given by \( \cos\theta = 1 / (\beta n) \). Note that in a dispersive medium, the index of refraction is an inreasing function of photon energy. The mean number of photons per unit length is given by
\[ \difd{N}{x} = \frac{\alpha z^2}{\hbar c} \int_{\epsilon_\text{min}}^{\epsilon_\text{max}} \left(1 - \frac{1}{n^2\beta^2} \right) \dif\epsilon = \frac{\alpha z^2}{\hbar c} \left[\epsilon_\text{max} - \epsilon_\text{min} - \frac{1}{\beta^2} \int_{\epsilon_\text{min}}^{\epsilon_\text{max}} \frac{1}{n^2(\epsilon)}\dif\epsilon \right]. \]
|
inline |
Calculate the mean number of Cherenkov photons produced per unit length.